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Objective

Goal

Given a large corpus of images, train a generative model such that we can sample new 
images from this model. 

How can we do this? 

● Autoregressive model
● GAN
● Normalizing Flows
● VAE



Autoregressive Model

Pros:
- Tractable exact log likelihood maximization

Cons:
- This factorization requires a causal model and a tractable distribution for each factor.
- Generates “tokens” one at a time. 



Autoregressive Model: Method 1

Generative Pretraining from Pixels

1680 x 1122 x 3 matrix
where each value is in {0, 1, 2, … 255}

1680 x 1122 x 3 ~ 5.65M tokens with 
vocabulary size of 256

https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf


Autoregressive Model: Method 2 (More Common)

Taming Transformers for High-Resolution Image Synthesis

Encoder: Take an image, map each patch (e.g. 16x16x3) 
to an embedding in a 32K embedding table (codebook)

Decoder: Take the mapped embedding lookups, and 
reconstruct the original image as faithfully as possible.

https://arxiv.org/abs/2012.09841


Autoregressive Model: Method 2 (More Common)

Scaling Autoregressive Models for Content-Rich Text-to-Image Generation

Encoder: Take an image, map each patch (e.g. 16x16x3) 
to an embedding in a 32K embedding table (codebook)

Decoder: Take the mapped embedding lookups, and 
reconstruct the original image as faithfully as possible.

1680 x 1122 x 3 matrix

(1680 / 16) x (1122 / 16) matrix

7350 tokens (32K vocab size)

https://arxiv.org/abs/2206.10789


Autoregressive Model: Method 2 (More Common)

This approach has been shown to work successfully.

Zero-Shot Text-to-Image Generation - Original DALL-E paper

Scaling Autoregressive Models for Content-Rich Text-to-Image Generation

Chameleon: Mixed-Modal Early-Fusion Foundation Models

https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2206.10789
https://arxiv.org/abs/2405.09818


Autoregressive Model: Method 2 (More Common)

Main Limitation

The mapping of images to 32K discrete tokens is lossy.

16 x 16 x 3 pixel patch → 768 bits being mapped to ~15 bits

Hence, even a perfect autoregressive model is bound by the lossiness of the 
autoencoder.



Score Matching and Diffusion Models



Score Based Generative Models

What is a score?

Notes:
● X must be a continuous random variable, for score to be defined. 
● We can treat an image as an instance of a continuous random variable, even though technically, images are 

represented as discrete objects.



Score Based Generative Models

What is a score?

Core Idea:
● Given a set of data points from the distribution p(x), train a neural network sθ(x) that can map to this score function. 
● Once we have this score function estimator sθ(x), we can use this to generate new samples from the model using 

Langevin dynamics.



Quick Detour: Langevin Dynamics

Given a probability distribution p(x), langevin dynamics provides a Markov Chain Monte Carlo (MCMC) to obtain random 
samples from this distribution.

Say x0 ~ Q(x) where Q(x) can be any arbitrary distribution which is easy to sample from (e.g. standard Normal Gaussian 
distribution), we can sample from p(x) using the following iterative process

where zt ~ N(0, I). As long as the step size a.k.a \epsilon → 0, and the number of iterations → \infinity, the resulting sample 
x_t converges to a sample from p(x).



Score Based Generative Models

How do we learn sθ(x)?

Essentially, this is the objective function we care about minimizing.

Just like typical maximum likelihood objectives, the expectation can be estimated by Monte Carlo 
estimation through the available data samples.

There are two main problems here:

● We do not have access to the ground truth score values. 
● The above objective function would not let us train the score function on any data point outside the 

manifold. i.e. if p(x) ~ 0. 



Score Based Generative Models

Say we start x0 ~ N(0, I), which clearly will have p(x) ~ 0, the score function sθ(x) will essentially be random, and not 
necessarily pointing towards the data distribution. 



Score Based Generative Models

Say we start x0 ~ N(0, I), which clearly will have p(x) ~ 0, the score function sθ(x) will essentially be random, and not 
necessarily pointing towards the data distribution. 

Solution:



Score Based Generative Models

Combining all the different noise levels, we end up with this new objective function

● Now, the score function is also conditioned on the noise level of the current distribution. 
● \lambda(i) is the loss weight for the distribution i. 

There is still one problem: we do not have access to the ground truth scores.

Generative Modeling by Estimating Gradients of the Data Distribution

https://arxiv.org/abs/1907.05600


Score Based Generative Models

A beautiful result from A connection between score matching and denoising autoencoders shows that the equivalence 
between these two objective functions:

This is tractableThis is intractable

https://ieeexplore.ieee.org/abstract/document/6795935


Score Based Generative Models



Score Based Generative Models



Score Based Generative Models

Setting \lambda(i) to \sigma_i^2 and 
reparameterizing score function to absorb 
-\sigma_i 



Score Based Generative Models

The training algorithm would look like this:

Generative Modeling by Estimating Gradients of the Data Distribution

https://arxiv.org/abs/1907.05600


Visualization of intermediate samples 
following Langevin dynamics from a 
trained score model.

Score Based Generative Models

Generative Modeling by Estimating Gradients of the Data Distribution

https://arxiv.org/abs/1907.05600


Diffusion Models

Denoising Diffusion Probabilistic Models
Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion model is trained to map noise back to data 

simple destructive process slowly maps data to noise
(often pre-specified)

https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/1503.03585


Diffusion Models

Diffusion model is trained to map noise back to data 

simple destructive process slowly maps data to noise
(often pre-specified)

Let’s define a markov chain graphical model x_0 → x_1 → x_2 → … → x_T where the following holds:



Diffusion Models

Diffusion model is trained to map noise back to data 

simple destructive process slowly maps data to noise
(often pre-specified)

This functional form allows us to analytically compute the distribution of x_t from x_0 (we don’t have to 
actually run the iterative markov chain to get to x_t)



Diffusion Models

Forward Process



Diffusion Models

Forward Process Reverse Process



Diffusion Models

Forward Process Reverse Process



Diffusion Models

If we set 𝛽t to be significantly smaller compared to the variance of x_t. 

The smaller the 𝛽t, the closer the functional form of the p𝜭 is to q. Given, q is a unimodal gaussian 
distribution, we can parameterize p𝜭 as 

We need to learn these two time / noise scale conditional 
models. For simplicity, we generally keep the variance fixed, 
and only learn the mean.



Diffusion Models

Training

Training amounts to optimizing maximum likelihood

where



Diffusion Models

After a lot of simplifications, the training objective simplifies* down to

     This is constant      Can ignore this for now

* This objective is actually a lower bound on the 
maximum likelihood estimation. 

Generally referred to as Evidence Lower Bound 
(ELBO)



Diffusion Models

 

The formulation of the forward process allows a close form expression for the left distribution, and 
it is a Gaussian distribution. 

We know that the right distribution can also be parameterized as a Gaussian distribution, hence, 
this KL divergence is essentially a problem of matching the mean of the two distributions. 



Diffusion Models

 

We basically need to learn this mapping. 



Diffusion Models

Recall that x_t and x_0 are related in the 
following way:

Given x_t and t as input, the only unknown 
quantity in the target is x_0 (or equivalently the 
input noise \epsilon). With further simplification, 
the objective function becomes



Diffusion Models

Weighted version of the original ELBO 
objective



Diffusion Models

Weighted version of the original ELBO 
objective

Recall the final objective function from score 
matching. They are equivalent! 

There is an equivalence between a weighted 
MLE objective of diffusion models and score 
matching. 

Recent paper have shown that under certain 
weightings, score matching objective is 
equivalent to ELBO objective function.

https://proceedings.neurips.cc/paper_files/paper/2023/file/ce79fbf9baef726645bc2337abb0ade2-Paper-Conference.pdf


Diffusion Models
Score-Based Generative Modeling through Stochastic Differential Equations

Highly recommend reading this work that formalizes the connection between 
diffusion models and score based generative models. 

https://arxiv.org/abs/2011.13456


Diffusion Models



Diffusion Models During sampling, every step, we have 
some noisy image x_t, and our model is 
predicting the noise that was added to 
x_t (i.e. effectively denoising the image). 

From score conditioning, we also know 
that this predicted “noise” is effectively 
related to* score of the true data 
distribution. 

*actually this points in the opposite 
direction of score



Diffusion Models

The geometry of diffusion guidance

https://sander.ai/2023/08/28/geometry.html


Diffusion Models

The geometry of diffusion guidance
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Diffusion Models

The geometry of diffusion guidance
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Diffusion Models

The geometry of diffusion guidance
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Diffusion Models

The geometry of diffusion guidance
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Diffusion Models

The geometry of diffusion guidance

https://sander.ai/2023/08/28/geometry.html


Diffusion Models

https://docs.google.com/file/d/1lgZNBlaqcn6HRJx7f8Cu-fpnHg5DaRiK/preview


Diffusion Models

Diffusion model / score matching sampling can be thought of as taking 
steps in the direction of high probability region of data distribution. 

Hence, if we run this sampling for several iterations, we should end up with 
a sample which has high log likelihood under data distribution.



Conditional Diffusion Models

So far, our denoiser network does not get any extra conditioning signal. 
Generally, in generative models, we want some kind of control during 
inference. 

Examples of such controls / conditioning signals:

● Low resolution image (Super-Resolution model)

● Text (Text to Image model)

● Black and white image (Colorization model)



Conditional Diffusion Models



Classifier Guidance

For a given conditioning signal c, say we have access to a classifier that models the 
probability p(c | x_t). 

During sampling from the diffusion model, we can add this additional term to further 
enforce the diffusion model to specifically follow the conditioning signal.



Classifier Guidance
Say, we are sampling an image conditioned on the text “dog”. And we have a classifier that 
classifies images between a “dog” and a “cat”. 

This additional classifier guidance essentially guides us towards images where p(“cat” | x_t) is 
close to 0.

More likely Less likely

Low Diversity

Diffusion Models Beat GANs on Image Synthesis

https://arxiv.org/abs/2105.05233


Classifier Guidance

What does this classifier look like?

● The classifier should be able to give a probability of the class c given a noisy 
image x_t. 

● e.g. for class conditional ImageNet, this would be a classifier which takes a noisy 
image and gives logits for all the 1000 classes. 

● for text to image, this could be an autoregressive captioner, that captions a noisy 
image. 

We need to train this classifier for every new task, which can be non-trivial.
 



Classifier (Free) Guidance

Can we estimate this quantity some other way?

Bayes Rule to the rescue!

We already have this. This is 
what we trained our diffusion 
model for.

When training the diffusion 
model, we can drop the 
conditioning signal some x% of 
the time. And during sampling, 
estimate this by just dropping the 
conditioning signal.Classifier-Free Diffusion Guidance

https://arxiv.org/abs/2207.12598


Classifier (Free) Guidance

New sampling iteration rule. Every sampling step, 
we are running two forward passes of the model.



Conditional Diffusion Models



Conditional Diffusion Models



Conditional Diffusion Models

Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding

https://arxiv.org/abs/2205.11487


Diffusion Models in Practice: Continuous Latent Space
Task: High Resolution Image Generation, say generating 1K x 1K images.

Given the resolution is very high to model, we need to compress images into a low dimensional 
latent space. Unlike autoregressive models, there is no need to discretize representations.

e.g. typically, we can compress by a factor of 16x16, so a 1K x 1K image can be mapped to 
128 x 128 latent image.



Diffusion Models in Practice: Cascaded Generation
Task: High Resolution Image Generation, say generating 1K x 1K images.

An alternative approach is cascaded generation, where you train multiple models to 
progressively generate larger and larger images. 

High Fidelity Image Generation Using Diffusion Models

https://research.google/blog/high-fidelity-image-generation-using-diffusion-models/


Diffusion Models in Practice: Architecture

Only 1 requirement:

The dimensions of input and output should be the same.

Generally two alternatives for architecture:

U-Net: Convolutional Networks for Biomedical Image Segmentation Scalable Diffusion Models with Transformers

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://arxiv.org/abs/2212.09748


Diffusion Models in Practice: Noise Schedule
Recall the training objective of diffusion models, where we uniformly sample a timestep t, and 
based on that, a particular level of noise is added to the image. 



Diffusion Models in Practice: Noise Schedule

    Example noise schedules

We can technically use a different noise 
schedule for training, and a different one 
for sampling.

Understanding Diffusion Objectives as the ELBO with Simple Data Augmentation

https://proceedings.neurips.cc/paper_files/paper/2023/hash/ce79fbf9baef726645bc2337abb0ade2-Abstract-Conference.html


Diffusion Models in Practice: Slow Sampling
Typically, diffusion models require 100-1000 sampling iterations to converge to a sample. 

This makes them significantly expensive compared to alternatives such GAN, VAE, 
Normalizing Flows which all require exactly 1 forward pass.

A lot of research has gone into improving diffusion model sampling speed:

Denoising Diffusion Implicit Models  → Deterministic Sampler, Smoother trajectory
DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps
DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models

https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2206.00927
https://arxiv.org/abs/2211.01095


Diffusion Models in Practice: Slow Sampling
Another direction is model distillation. Effectively, we run diffusion sampling  from the teacher 
model, and train a student model to approximate two step denoising into 1 step denoising.

Progressive Distillation for Fast Sampling of Diffusion Models

https://arxiv.org/abs/2202.00512


More References
Elucidating the Design Space of Diffusion-Based Generative Models

Simple diffusion: End-to-end diffusion for high resolution images

Simpler Diffusion (SiD2): 1.5 FID on ImageNet512 with pixel-space diffusion

Analyzing and Improving the Training Dynamics of Diffusion Models

https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2301.11093
https://arxiv.org/abs/2410.19324
https://openaccess.thecvf.com/content/CVPR2024/html/Karras_Analyzing_and_Improving_the_Training_Dynamics_of_Diffusion_Models_CVPR_2024_paper.html


Thank You!


