Score Matching & Diffusion
Models

Chitwan Saharia
ldeogram Al

Obijective

Goal

Given a large corpus of images, train a generative model such that we can sample new
images from this model.

How can we do this?

Autoregressive model
GAN

Normalizing Flows

VAE

Autoregressive Model

n

p(z) = | [p(@n,

=1

Loy 5o s Bag_15'0)

Pros:
- Tractable exact log likelihood maximization

Cons:
- This factorization requires a causal model and a tractable distribution for each factor.

- Generates “tokens” one at a time.

Autoregressive Model: Method 1

1680 x 1122 x 3 matrix
where each value is in {0, 1, 2, ... 255}

1680 x 1122 x 3 ~ 5.65M tokens with
vocabulary size of 256

Generative Pretraining from Pixels

https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf

Autoregressive Model: Method 2 (More Common)

Encoder: Take an image, map each patch (e.g. 16x16x3)
to an embedding in a 32K embedding table (codebook)

real/fak

CNN P -
Decoder s ,

Figure 2. Our approach uses a convolutional VQGAN to learn a codebook of context-rich visual parts, whose composition is subsequently
modeled with an i i A discrete provides the interface between these architectures and a

patch-ba.sad discriminflor;nables strongbz;n;p}:iegs:ion whi}e r;:;r;i:;:ﬁl;gzmeptual quality. This method introduces the efficiency of D e c o d e r: Ta k e th e m a p p e d e m b e d d i n g | O 0 ku p S , a n d
reconstruct the original image as faithfully as possible.

. u 2
argmin;cz |2 — zl|
oo

Taming Transformers for High-Resolution Image Synthesis

https://arxiv.org/abs/2012.09841

Autoregressive Model: Method 2 (More Common)

1680 x 1122 x 3 matrix

(1680 / 16) x (1122 / 16) matrix

7350 tokens (32K vocab size)

Scaling Autoregressive Models for Content-Rich Text-to-lmage Generation

Encoder: Take an image, map each patch (e.g. 16x16x3)
to an embedding in a 32K embedding table (codebook)

Decoder: Take the mapped embedding lookups, and
reconstruct the original image as faithfully as possible.

https://arxiv.org/abs/2206.10789

Autoregressive Model: Method 2 (More Common)

This approach has been shown to work successfully.

Zero-Shot Text-to-Image Generation - Original DALL-E paper

Scaling Autoregressive Models for Content-Rich Text-to-lmage Generation

Chameleon: Mixed-Modal Early-Fusion Foundation Models

https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2206.10789
https://arxiv.org/abs/2405.09818

Autoregressive Model: Method 2 (More Common)

Main Limitation
The mapping of images to 32K discrete tokens is lossy.
16 x 16 x 3 pixel patch — 768 bits being mapped to ~15 bits

Hence, even a perfect autoregressive model is bound by the lossiness of the
autoencoder.

Score Matching and Diffusion Models

Diffusion Models Beat GANs on Image Synthesis

Palette: Image-to-Image Diffusion Models

Image Super-Resolution via Iterative Refinement

Cascaded Diffusion Models
for High Fidelity Image Generation

IMAGEN VIDEO: HIGH DEFINITION VIDEO
GENERATION WITH DIFFUSION MODELS

WAVEGRAD: ESTIMATING GRADIENTS FOR
WAVEFORM GENERATION

Photorealistic Text-to-Image Diffusion Models
with Deep Language Understanding

Text Generation with Diffusion Language Models: A Pre-training Approach
with Continuous Paragraph Denoise

All-Atom Protein Generation with Latent Diffusion

Score Based Generative Models

What is a score?

Say we have a random variable X with a probability distribution p(a:), then the score function of
p(x) is defined as

V. log p(z)

Notes:

e X must be a continuous random variable, for score to be defined.
e We can treat an image as an instance of a continuous random variable, even though technically, images are
represented as discrete objects.

Score Based Generative Models

What is a score?

Say we have a random variable X with a probability distribution p(z), then the score function of
p(x) is defined as

V. log p(z)

Core ldea:

e Given a set of data points from the distribution p(x), train a neural network s (x) that can map to this score function.
e Once we have this score function estimator s (x), we can use this to generate new samples from the model using
Langevin dynamics.

Quick Detour: Langevin Dynamics

Given a probability distribution p(x), langevin dynamics provides a Markov Chain Monte Carlo (MCMC) to obtain random
samples from this distribution.

Say x, ~ Q(x) where Q(x) can be any arbitrary distribution which is easy to sample from (e.g. standard Normal Gaussian
distribution), we can sample from p(x) using the following iterative process

Tir1 = o + €V log, p(x:) + + v/ 2ez;

where z, ~ N(0, I). As long as the step size a.k.a \epsilon — 0, and the number of iterations — \infinity, the resulting sample
x_t converges to a sample from p(x).

Score Based Generative Models

How do we learn s (x)?

Essentially, this is the objective function we care about minimizing.

By [V o p(x) ~ 30(x)3] = [px)[|V logp(x) —5(x)3x

Just like typical maximum likelihood objectives, the expectation can be estimated by Monte Carlo
estimation through the available data samples.

There are two main problems here:

e \We do not have access to the ground truth score values.
e The above objective function would not let us train the score function on any data point outside the
manifold. i.e. if p(x) ~ 0.

Score Based Generative Models

Say we start x, ~ N(0, /), which clearly will have p(x) ~ 0, the score function s (x) will essentially be random, and not
necessarily pointing towards the data distribution.

Ti11 = o + €Vlog, p(x) + V2ez;

Score Based Generative Models

Say we start x, ~ N(0, /), which clearly will have p(x) ~ 0, the score function s (x) will essentially be random, and not
necessarily pointing towards the data distribution.

Ti11 = o + €Vlog, p(x) + V2ez;

Solution:

Let's define N distributions p,,(Z), Do, (%), Ps, (Z), ---Poy (Z) where
pa(2) = [p@N(@52,02D)

andoy~0< 01 <09 < < oON

Score Based Generative Models

Combining all the different noise levels, we end up with this new objective function

N

3 AG) / Por(2) ||V 2 1og 9z, (2) — 56(Z, 03)| 3

i=0
° Now, the score function is also conditioned on the noise level of the current distribution.

e \lambda(i) is the loss weight for the distribution i.

There is still one problem: we do not have access to the ground truth scores.

Generative Modeling by Estimating Gradients of the Data Distribution

https://arxiv.org/abs/1907.05600

Score Based Generative Models

A beautiful result from A connection between score matching and denoising autoencoders shows that the equivalence

between these two objective functions:

A0 [2o @1|Fs logpn @) ss(@ 0l —— DA / P ()]

|

This is intractable

N

1=0

IV log p,. (Z|x)

|

— 59(Z,03)][3]

This is tractable

https://ieeexplore.ieee.org/abstract/document/6795935

Score Based Generative Models

_ (z—2)?

Po,(Z|z) = Ce *

=2
log p, (Z|z) = log C — @ 233)
207
T—
Vzlogps, (Z|z) = (0.2)

Score Based Generative Models

_ (z—2)?

Po,(Z|z) = Ce *

5 2)2 T=1x+eo; €~ N(0,I)
108 pr, (2[z) = log 0 —) —
(U)i V;zlogp,, (Z|x) = —
x — & 0
V3 log ps,(Z]z) = o2

Score Based Generative Models

N
Y A0 Eanp,,)| Vo log po, (Z[2) — 50(Z, 03)][3]

|

N
: € 2
Z)‘(7’) IEGNN(O,I),:va(:c)m - ; - 39(33 + €0y, 0%)||2]
i=0 ¢
Setting \lambda(i) to \sigma_i*2 and
J reparameterizing score function to absorb
-\sigma_i

N

Z EeNN(O,I), az:wp(ac)[H6 - 3’9(33 + €05, Uz)”%]
i=0

Score Based Generative Models

The training algorithm would look like this:

1. Given a training data point
Sample one of the noise levels o;
Sample € ~ N(0,)

Minimize ||e — s)(z + €03, 03)] |3

-l <

Generative Modeling by Estimating Gradients of the Data Distribution

https://arxiv.org/abs/1907.05600

Score Based Generative Models

Visualization of intermediate samples

following Langevin dynamics from a
trained score model.

Generative Modeling by Estimating Gradients of the Data Distribution

oo 2
.»J y
2
S
[3 ——
\;@"

e

FEEY

v G5

£

S
-2

(]
W

!

B

RS
[
»

\,

-

https://arxiv.org/abs/1907.05600

Diffusion Models

simple destructive process slowly maps data to noise
(often pre-specified)

o

Diffusion model is trained to map noise back to data

Denoising Diffusion Probabilistic Models
Deep Unsupervised Learning using Nonequilibrium Thermodynamics

https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/1503.03585

Diffusion Models

F simple destructive process slowly maps data to noise
(often pre-specified)

Diffusion model is trained to map noise back to data

Let’s define a markov chain graphical model x 0 - x 1 —-x 2 — ... — x_T where the following holds:

Q(wo) = pdata(wo)
q(zr) ~ N(0,1)

g(zi|zi—1) = N (25 /1 — e, Bed)

Diffusion Models

F simple destructive process slowly maps data to noise
(often pre-specified) i

; Diffusion model is trained to map noise back to data Q

This functional form allows us to analytically compute the distribution of x_t from x_0 (we don’t have to
actually run the iterative markov chain to get to x_t)

q(zt|zo) = N (z4; vV zo, (1 — a)I)
oy = H(l — Bt)

1=0

Diffusion Models

Forward Process

Q('CCO) — pdata(wO)

Q($t|$t—1) — N(wt; Al — ﬂtwt—laﬂtf)

q(zr) =~ N(0,1)

Diffusion Models

Forward Process Reverse Process
Q(CUO) — pdata(xO) pe(wT) ~ N(O7 I)
q(zt|zi-1) = N (245 v/ 1 — Bii—1, Bel) Po(@t|e11) = reverse(q(zir1|zt))

q(z7) =~ N(0,1) Po(Z0) = Pdata(Zo)

Diffusion Models

Forward Process

Q(wO) — Pdata (330)

q(zt|@i—1) = N (@45 /1 — Bxe—1, Be])

q(zr) =~ N(0,1)

Reverse Process

po(z7) ~ N(0,1)

po(xt|Tei1) = reverse(q(xii1|xt))

Do ($0) ~ DPdata (mO)

Diffusion Models

po(xt|Tei1) = reverse(q(xii1|xt))

If we set g, to be significantly smaller compared to the variance of x_t.

The smaller the 3, the closer the functional form of the p is to q. Given, q is a unimodal gaussian
distribution, we can parameterize p ,as

p0($t|£€t+1) — N(wt; /Le(wt, t)v 0'9(33757 t))

We need to learn these two time / noise scale conditional
models. For simplicity, we generally keep the variance fixed,
and only learn the mean.

Diffusion Models

Training

Training amounts to optimizing maximum likelihood

E%NQ(%) [log Pe (mO)]

where

T-1

po(z0) = po(zT) - Hpe(ictlwtﬂ)

Diffusion Models

After a lot of simplifications, the training objective simplifies* down to

E, lPKL(Q(xT|XO) | p(XT)Z-F ZPKL(Q(Xt—1|XtaXO) || po(xt—1]%¢)) —logpe(X0|X12]

Lo il Li i L

This is constant Can ignore this for now

* This objective is actually a lower bound on the
maximum likelihood estimation.

Generally referred to as Evidence Lower Bound
(ELBO)

Diffusion Models

> Dx(a(xe—1%¢,%0) || po(xs-1]x:))

1 TV
t> L1

The formulation of the forward process allows a close form expression for the left distribution, and
it is a Gaussian distribution.

q(Xt_1|Xt,X0) = N(xt—l; ﬂ’t(xth)’BtI),
V@B, | Ja(l—a) 5 1=di

where [i,(x¢,Xq) = - Xo + T x; and [= -
-y -y — 0y

Bt

We know that the right distribution can also be parameterized as a Gaussian distribution, hence,
this KL divergence is essentially a problem of matching the mean of the two distributions.

Diffusion Models

Q(Xt—1|Xt,X0) = N(Xt—l; ["t(xhXO),BtI)a

N Vou(l —oy— ~ 1—oy-
where | fi,(x4,Xq) = Oltiiﬂtxo + o _at 1)Xt and ;= at_ 15:5
1 — &y 1— &y 1—ay

We basically need to learn this mapping.

Pe(wt\wtﬂ) — N(fl?t; Mo(ili‘t, t), Ue(ilft, t))

Diffusion Models

q(x¢—1]%¢,%0) = N (x¢—1; ity (X¢, X0), Bi 1),

where| fi,(x¢,%0) =

Ol (1 — oy
\/1 t ; tx0+ Vo (t 1)xt
— Oy

1—o

P0($t|$t+1) — N(wt;

po(xt,t),00(xs, 1))

Recall that x_t and x_0 are related in the
following way:

LTt = 4/ Cftw() + € (]. — th)

Given x_t and t as input, the only unknown
quantity in the target is x_0 (or equivalently the
input noise \epsilon). With further simplification,
the objective function becomes

2
Exo,e[b) € — eo(v/@xo + VI—aze,)|

20'?at(1 — O

Diffusion Models

2
B | ot Nl = ea(Waimo + V= e,)|

20’?0515(1 — O

Weighted version of the original ELBO
objective

Lsimple(e) =]Et,xo,e [HG - 66(\/0_775)(0 + v 1— OlLE, t)”2:|

Diffusion Models

2
B | ot Nl = ea(Waimo + V= e,)|

20’?0@(1 — O

Weighted version of the original ELBO

objective

Lsimple(e) =]Et,xo,e l:”€ - 60(\/0_715)(0 + V 1-— O_ltG, t)”2:|

Recall the final objective function from score
matching. They are equivalent!

N

Y Een(0.0), zp(w) || 1€ — sh(@ + €05, 04)|[3]
1=0

There is an equivalence between a weighted
MLE objective of diffusion models and score
matching.

Recent paper have shown that under certain
weightings, score matching objective is
equivalent to ELBO objective function.

https://proceedings.neurips.cc/paper_files/paper/2023/file/ce79fbf9baef726645bc2337abb0ade2-Paper-Conference.pdf

Diffusion Models

Score-Based Generative Modeling through Stochastic Differential Equations

Highly recommend reading this work that formalizes the connection between
diffusion models and score based generative models.

https://arxiv.org/abs/2011.13456

Diffusion Models

Algorithm 1 Training
1: repeat
2: x0 ~ q(x0)
3: t ~ Uniform({1,...,7T})
4: e~ N(0,I)
5: Take gradient descent step on

Vo ||€ — ea(varxo + v/1— c'\cte,t)H2

6: until converged

Diffusion Models

Algorithm 2 Sampling
l: x7 ~ N(O,I)
2:. fort=1T,...,1do
3: z~N(0,I)ift > 1,elsez =10
4: x41 = \/% Xt — %Ge(xt,t)) + 0z
5: end for
6: return xg

During sampling, every step, we have
some noisy image x_t, and our model is
predicting the noise that was added to
x_t (i.e. effectively denoising the image).

From score conditioning, we also know
that this predicted “noise” is effectively
related to* score of the true data
distribution.

*actually this points in the opposite
direction of score

Diffusion Models

The geometry of diffusion quidance

https://sander.ai/2023/08/28/geometry.html

Diffusion Models

predict x,

The geometry of diffusion quidance

https://sander.ai/2023/08/28/geometry.html

Diffusion Models

The geometry of diffusion quidance

take a small step

https://sander.ai/2023/08/28/geometry.html

Diffusion Models

The geometry of diffusion quidance

add some noise

https://sander.ai/2023/08/28/geometry.html

Diffusion Models

The geometry of diffusion quidance

https://sander.ai/2023/08/28/geometry.html

Diffusion Models

The geometry of diffusion quidance

repeat

https://sander.ai/2023/08/28/geometry.html

Diffusion Models

B84x64 1024x1024

https://docs.google.com/file/d/1lgZNBlaqcn6HRJx7f8Cu-fpnHg5DaRiK/preview

Diffusion Models

L1 — Ata)t = Bt % Gg(wt, t) + CtZ

r;_1 = Ay + By x|V, log p(z;) |+ Cyz

Diffusion model / score matching sampling can be thought of as taking
steps in the direction of high probability region of data distribution.

Hence, if we run this sampling for several iterations, we should end up with
a sample which has high log likelihood under data distribution.

Conditional Diffusion Models

So far, our denoiser network does not get any extra conditioning signal.
Generally, in generative models, we want some kind of control during
inference.

eg(xs,t) — €g(xg, t, C)
Examples of such controls / conditioning signals:
e Low resolution image (Super-Resolution model)
e Text (Text to Image model)

e Black and white image (Colorization model)

Conditional Diffusion Models

r; 1 = Asxy + By xleg(x4,t,c) |+ Ciz

!
Li_1 — AtCUt + Bt *

VCBt log p(wt |C)

an CtZ

Classifier Guidance

/
x; 1 = Ayxy + B, x Vy, log p(x;|c) + Ciz
For a given conditioning signal c, say we have access to a classifier that models the
probability p(c | x_1).

During sampling from the diffusion model, we can add this additional term to further
enforce the diffusion model to specifically follow the conditioning signal.

r; 1 = Ayzy + By x [V, log p(zi|c) + AV, log p(c|zi)| + Ciz

Additional gradient direction to maximize p(c|z:). The weight A can be thought of as augmenting
the classifier as p(c|z:) — 7p(c|z:)*. The higher the value of), the more we focus on the

modes of the classifier.

Classifier Guidance

Say, we are sampling an image conditioned on the text “dog”. And we have a classifier that
classifies images between a “dog” and a “cat”.

This additional classifier guidance essentially guides us towards images where p(“cat” | x_t) is
close to 0.

Low Diversity

More likely Less likely

Diffusion Models Beat GANs on Image Synthesis

https://arxiv.org/abs/2105.05233

Classifier Guidance

What does this classifier look like?

e The classifier should be able to give a probability of the class ¢ given a noisy
image x_t.

e e.g. for class conditional ImageNet, this would be a classifier which takes a noisy
image and gives logits for all the 1000 classes.

e for text to image, this could be an autoregressive captioner, that captions a noisy
image.

We need to train this classifier for every new task, which can be non-trivial.

Classifier (Free) Guidance

Can we estimate this quantity some other way?

vxt logp(c‘mt)

Bayes Rule to the rescue!

log p(cl|az:) = log p(z¢|c) + log p(c) — log p(z+)

V., log p(c|z:) = Vs, log p(z:|c)

th]'Og p(mt)

l

We already have this. This is
what we trained our diffusion

model for.

Classifier-Free Diffusion Guidance

l

When training the diffusion
model, we can drop the
conditioning signal some x% of
the time. And during sampling,
estimate this by just dropping the
conditioning signal.

https://arxiv.org/abs/2207.12598

Classifier (Free) Guidance

log p(c|z:) = log p(@:|c) + log p(c) — log p(x¢)
V., logp(clzt) = Vy, log p(zt|c) — Vo, log p(z:)

r;_1 = Ayxy + B, * [V, log p(z¢|c) + AV, log p(clz;)] + Ciz

r; 1 = Ay + By x [(\ + 1)V, log p(z¢|c) — AV, log p(z:)] + Ciz

New sampling iteration rule. Every sampling step,
we are running two forward passes of the model.

Conditional Diffusion Models

r; 1 = Asxy + By *leg(x4, t, c)|+ Ciz

T = /azg + €/ (1 — &)

Recall that ee(wt, t, :c) is approximating €. So from these two equations, at every sampling step we
can extract our current prediction of fully denoised image .

At the start of sampling, this Z will be a blurry image, as the denoiser is essentially denoising from
pure noise. Over time, this prediction will get sharper.

Conditional Diffusion Models

r; 1 = Asxy + By *leg(x4, t, c)|+ Ciz

T = /azg + €/ (1 — &)

If our original image data x has a pre-defined range of [-1, 1] or [0, 1] (which is usually the case),
we ideally do not want this 2 to deviate from that range.

The diffusion models generally do not impose any architecture constraint to enable this, hence
this problem quite often arises.

Conditional Diffusion Models

(a) No thresholding. (b) Static thresholding. (c) Dynamic thresholdlng

Figure A.9: Thresholding techniques on 256 x 256 samples for “A photo of an astronaut riding a
horse.” Guidance weights increase from 1 to 5 as we go from top to bottom. No thresholding results
in poor images with high guidance weights. Static thresholding is an improvement but still leads to
oversaturated samples. Our dynamic thresholding leads to the highest quality images. See Fig. A.10
for more qualitative comparison.

Photorealistic Text-to-lmage Diffusion Models with Deep Language Understanding

https://arxiv.org/abs/2205.11487

Diffusion Models in Practice: Continuous Latent Space

Task: High Resolution Image Generation, say generating 1K x 1K images.

Given the resolution is very high to model, we need to compress images into a low dimensional
latent space. Unlike autoregressive models, there is no need to discretize representations.

e.g. typically, we can compress by a factor of 16x16, so a 1K x 1K image can be mapped to
128 x 128 latent image.

Reconstructed

Input < ---cocooooo e Ideally they are identical. ------------------ > input

x ~x
Bottleneck!
Encoder Decoder ,
x >
9¢ fo X
An compressed low dimensional
representation of the input.

Diffusion Models in Practice: Cascaded Generation

Task: High Resolution Image Generation, say generating 1K x 1K images.

An alternative approach is cascaded generation, where you train multiple models to
progressively generate larger and larger images.

Irish Setter

High Fidelity Image Generation Using Diffusion Models

https://research.google/blog/high-fidelity-image-generation-using-diffusion-models/

Diffusion Models in Practice: Architecture

Only 1 requirement:

The dimensions of input and output should be the same.

Generally two alternatives for architecture:

odice UNet 128 6464 11
4 N\ é
A —
@ —
o Scale —22—
X Noise % ' Pointwise
& ward
- szxazaal) Usexcexs eonise Bacidas
i ‘o 22 Sy o)
.64 x64 ' 128x128 Linear and Reshape Scals; shit 222
256 128 4 N [
B Layer Norm / Lo
Muit-Head
— Cross-Atention
N x DiT Block e 71 | Layer Norm Selr-Attention
lszxsz I“x“ ! ‘é_} Layer Norm
\ Mulﬁ-Hsa_d -
256 256 512 256 Patchify Embed '\ Seithventen MultHead
\ . on Sequence
l 16x16 I 32x32 Noised Timestep¢ AN Layer Norm M Layer Norm i‘w‘va
1 1024 . Latent r \ 1 —
512 h — o 52 -+ Conv(3x3), RELU 32x32x4 Labely A __"waTolens Condtonng) | iutoiens consionns) Input Tokens Conditioning
goxs £ texts » MexPool2x2) Latent Diffusion Transformer DIT Block with adaLN-Zero DIT Block with Cross-Attention DIT Block with In-Context Conditioning
1024 mm) Deconv(2x2)
= Crop and Figure 3. The Diffusion Transformer (DiT) e. Left: We train ditional latent DiT models. The input latent is decomposed
concatenate into patches and processed by several DiT blocks. Right: Details of our DiT blocks. We experiment with variants of standard transformer
blocks that incorporate conditioning via adaptive layer norm, cross-attention and extra input tokens. Adaptive layer norm works best.

Scalable Diffusion Models with Transformers

U-Net: Convolutional Networks for Biomedical Image Segmentation

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://arxiv.org/abs/2212.09748

Diffusion Models in Practice: Noise Schedule

Recall the training objective of diffusion models, where we uniformly sample a timestep t, and
based on that, a particular level of noise is added to the image.

Algorithm 1 Training
1: repeat
2: x0 ~ q(x0)
3: t ~ Uniform({1,...,T})
4: €~ N(0,I)
5: Take gradient descent step on

Vo HE — 69(\/&_9(0 + 41— dte,t)Hz

6: until converged

Typically, we define the function logSNR(t) = log(1?_7107) , Which is the signal-to-noise ratio. We

t
can decide any kind of logSNR(t) function for the purpose of training, and this is generally a very

important training hyper parameter to tune.

Diffusion Models in Practice: Noise Schedule

We can technically use a different noise

Noise schedules - i
schedule for training, and a different one

—— Cosine
10 - .

—— EDM training for sampling.
—— EDM sampling

o' 4

> 5

n

S

= 07

<

010 0j2 014 0:6 0j8 1:0
Example noise schedules

Understanding Diffusion Objectives as the ELBO with Simple Data Augmentation

https://proceedings.neurips.cc/paper_files/paper/2023/hash/ce79fbf9baef726645bc2337abb0ade2-Abstract-Conference.html

Diffusion Models in Practice: Slow Sampling

Typically, diffusion models require 100-1000 sampling iterations to converge to a sample.
This makes them significantly expensive compared to alternatives such GAN, VAE,
Normalizing Flows which all require exactly 1 forward pass.

A lot of research has gone into improving diffusion model sampling speed:

Denoising Diffusion Implicit Models — Deterministic Sampler, Smoother trajectory

DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps
DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models

https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2206.00927
https://arxiv.org/abs/2211.01095

Diffusion Models in Practice: Slow Sampling

Another direction is model distillation. Effectively, we run diffusion sampling from the teacher
model, and train a student model to approximate two step denoising into 1 step denoising.

t=1 € 5 E
\
z3/4 = f (z1;m {
M=
zy2 = f 23/47 {
T e | s
z1/4 = f Z1/27 {
- o
X = f(Z1/4; 77){
v v N
t=20 X X X

Figure 1: A visualization of two iterations of our proposed progressive distillation algorithm. A
sampler f(z;n), mapping random noise € to samples x in 4 deterministic steps, is distilled into a
new sampler f(z;6) taking only a single step. The original sampler is derived by approximately
integrating the probability flow ODE for a learned diffusion model, and distillation can thus be
understood as learning to integrate in fewer steps, or amortizing this integration into the new sampler.

Progressive Distillation for Fast Sampling of Diffusion Models

https://arxiv.org/abs/2202.00512

More References

Elucidating the Design Space of Diffusion-Based Generative Models

Simple diffusion: End-to-end diffusion for high resolution images

Simpler Diffusion (SiD2): 1.5 FID on ImageNet512 with pixel-space diffusion

Analyzing and Improving the Training Dynamics of Diffusion Models

https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2301.11093
https://arxiv.org/abs/2410.19324
https://openaccess.thecvf.com/content/CVPR2024/html/Karras_Analyzing_and_Improving_the_Training_Dynamics_of_Diffusion_Models_CVPR_2024_paper.html

Thank You!

